Army lab finding better ways to convert JP-8 to hydrogen for portable electric power

By Joyce P. Brayboy, U.S. Army Research LaboratoryOctober 3, 2013

Army lab finding better ways to convert JP-8 to hydrogen for portable electric power in the field
1 / 5 Show Caption + Hide Caption – (Photo Credit: U.S. Army) VIEW ORIGINAL
Army lab finding better ways to convert JP-8 to hydrogen for portable electric power in the field
2 / 5 Show Caption + Hide Caption – (Photo Credit: U.S. Army) VIEW ORIGINAL
Army lab finding better ways to convert JP-8 to hydrogen for portable electric power in the field
3 / 5 Show Caption + Hide Caption – (Photo Credit: U.S. Army) VIEW ORIGINAL
Army lab finding better ways to convert JP-8 to hydrogen for portable electric power in the field
4 / 5 Show Caption + Hide Caption – (Photo Credit: U.S. Army) VIEW ORIGINAL
Army lab finding better ways to convert JP-8 to hydrogen for portable electric power in the field
5 / 5 Show Caption + Hide Caption – (Photo Credit: U.S. Army) VIEW ORIGINAL

ADELPHI, Md. (Oct. 3, 2013) -- What if Soldiers could convert JP-8 to clean hydrogen fuel for fuel cell applications anywhere and anytime they need it?

A small team of scientists at the U.S. Army Research Laboratory are collaborating with counterparts at the Communications-Electronics and the Tank Automotive Research, Development and Engineering Centers, to develop technology for lightweight, portable prototype systems that would convert Jet Propellant 8, commonly referred to as JP-8, to hydrogen on the spot.

"There is a growing demand for portable electrical power for both commercial and military applications," said Dr. Deryn Chu, fuel cell team leader. "Our challenge is 'How can we remove the many impurities in JP-8 so it can be effective in a fuel cell?'"

JP-8 is widely used by the U.S. Army as a fuel for powering aircraft, engines of tactical ground vehicles and electrical generators. It comes with a set of problems like the logistics resupply chain it requires, and the high cost associated with force protection of convoys, he said.

The Pentagon's most-used jet fuel costs roughly $15 per gallon, but ". . . the cost multiplies to hundreds of dollars by the time you move it to and around operational locations," Chu said.

For the Army ". . . the smallest gain in efficiency is important. But fuel cells -- when the concept is fully developed -- may yield huge gains, potentially doubling the efficiency of diesel generators," he said.

The chance for a game-changing technology is why fuel reformation is one of three high-risk, high-reward projects that the laboratory is pushing toward in search of operational energy solutions for the battlefield. Smart Battlefield Energy on-Demand and Long-Lived Power were also highlighted in this four-part series.

Researchers already knew the value of fuel cells for increasing efficiency, as that kind of approach has been explored since the 1960s. They also knew of ways to convert the high-energy density of hydrocarbons into hydrogen for fuel cells like the process that Bloom Energy and others use on the commercial market, said Dr. Zachary Dunbar, a team member who is exploring palladium membrane technology, using a rare metallic element as part of a purification system.

The challenge is developing a practical fuel reformation process for better energy conversion that would have to be portable, quick and easy to use, he said.

Last year, Army Research Laboratory's research reached a milestone when they figured out a way to reduce the production costs associated with fuel reformation by using palladium membranes to purify hyrogen rich reformate, Dunbar said.

In their work, scientists developed a new supported palladium membrane composite structure for purification technology to produce high-purity hydrogen from a feedstock of hydrocarbon fuel. Before this discovery, designing affordable, leak free, and high-flux membranes was much more difficult, he said.

"While it is a significant milestone, the research is in its early stages. Fuel reforming is a complex problem that we don't expect to solve quickly," Dunbar said.

The team tests materials that may reduce the sulfur concentration in JP-8. Dr. Dat Tran has tested at least 300 different combinations of materials during the last four years he has been investigating with the team, he said.

"JP-8 is a complicated and dirty fuel. The sulfur is a huge problem because it can hurt the fuel cells," Tran said. "Sulfur has many different compounds that behave differently. The compounds in sulfur make it hard to find an agreeable material."

JP-8 is a logistical fuel for the Department of Defense under its one-fuel policy. It is a unique problem for the Army. Industry is focused on natural gas, Chu said.

The U.S. Army Research, Development and Engineering Command's Communications-Electronics Center, Command, Power and Integration, or CERDEC CP&I, experts are integral to the research because they transition mobile power systems from the lab to the field, said Dr. Terry Dubois, fuel reforming and combustion engineer at CERDEC.

Everything from man-worn to multikilowatt systems comes through CERDEC, he said.

CERDEC CP&I enables the quick transition of optimum capabilities to the warfighter in support of ongoing operations.

Army units often wind up in places overseas with no infrastructure and limited supplies. The Army needs to explore and develop high-efficient fuel cell systems to reduce logistical supply. Scientists continue to grapple with the question of the best way to rid JP-8 of its organic sulfur compounds after it is in theater, Chu said.

-----

Fuel Reforming for Better Energy Conversion on the battlefield is the fourth and last article in a series of four stories about the U.S. Army Research Laboratory's far-reaching concepts for Army operational energy. Scientists and engineers at the U.S. Army Research Laboratory forecast energy solutions into the future with a portfolio of basic and applied science.

The U.S. Army Research Laboratory is part of the U.S. Army Research, Development and Engineering Command, which has the mission to develop technology and engineering solutions for America's Soldiers.

RDECOM is a major subordinate command of the U.S. Army Materiel Command. AMC is the Army's premier provider of materiel readiness -- technology, acquisition support, materiel development, logistics power projection and sustainment -- to the total force, across the spectrum of joint military operations. If a Soldier shoots it, drives it, flies it, wears it, eats it or communicates with it, AMC provides it.

Related Links:

Army Research Laboratory

First Steps

ARL Power and Energy

Army demos smaller, lighter, quieter 10kw power unit

U.S. Army Research, Development and Engineering Command

Army.mil: Science and Technology News

STAND-TO!: Energy Solutions for the Battlefield of the Future

Army Research Laboratory on Twitter

Army Research Laboratory on Facebook

Army Research Laboratory on YouTube